Genome-Wide Delineation of Natural Variation for Pod Shatter Resistance in Brassica napus

نویسندگان

  • Harsh Raman
  • Rosy Raman
  • Andrzej Kilian
  • Frank Detering
  • Jason Carling
  • Neil Coombes
  • Simon Diffey
  • Gururaj Kadkol
  • David Edwards
  • Margaret McCully
  • Pradeep Ruperao
  • Isobel A. P. Parkin
  • Jacqueline Batley
  • David J. Luckett
  • Neil Wratten
چکیده

Resistance to pod shattering (shatter resistance) is a target trait for global rapeseed (canola, Brassica napus L.), improvement programs to minimise grain loss in the mature standing crop, and during windrowing and mechanical harvest. We describe the genetic basis of natural variation for shatter resistance in B. napus and show that several quantitative trait loci (QTL) control this trait. To identify loci underlying shatter resistance, we used a novel genotyping-by-sequencing approach DArT-Seq. QTL analysis detected a total of 12 significant QTL on chromosomes A03, A07, A09, C03, C04, C06, and C08; which jointly account for approximately 57% of the genotypic variation in shatter resistance. Through Genome-Wide Association Studies, we show that a large number of loci, including those that are involved in shattering in Arabidopsis, account for variation in shatter resistance in diverse B. napus germplasm. Our results indicate that genetic diversity for shatter resistance genes in B. napus is limited; many of the genes that might control this trait were not included during the natural creation of this species, or were not retained during the domestication and selection process. We speculate that valuable diversity for this trait was lost during the natural creation of B. napus. To improve shatter resistance, breeders will need to target the introduction of useful alleles especially from genotypes of other related species of Brassica, such as those that we have identified.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expression divergence of FRUITFULL homeologs enhanced pod shatter resistance in Brassica napus.

To improve pod shatter resistance in the important oilseed crop Brassica napus, the phenotypic diversity of B. napus was tested using 80 B. napus varieties for pod shatter resistance by a random impact test. Among these varieties, R1-1 was identified as resistant, while R2, 8908B was susceptible to shatter. To understand the molecular basis for this phenotypic difference based on the candidate ...

متن کامل

Genome-wide association analyses of loci for shatter resistance in Brassicas

Dehiscence of siliquae (shattering) is a major issue for rapeseed (canola, Brassica napus L.) growers because it causes significant yield loss. To date, genetic variation for shatter resistance in cultivated Brassicas has not been comprehensively characterised. We evaluated 192 accessions of Brassica napus, B. rapa, B. juncea and B. carinata, representing contemporary cultivars and elite lines ...

متن کامل

Molecular Diversity Analysis and Genetic Mapping of Pod Shatter Resistance Loci in Brassica carinata L.

Seed lost due to easy pod dehiscence at maturity (pod shatter) is a major problem in several members of Brassicaceae family. We investigated the level of pod shatter resistance in Ethiopian mustard (Brassica carinata) and identified quantitative trait loci (QTL) for targeted introgression of this trait in Ethiopian mustard and its close relatives of the genus Brassica. A set of 83 accessions of...

متن کامل

Multigenic Control of Pod Shattering Resistance in Chinese Rapeseed Germplasm Revealed by Genome-Wide Association and Linkage Analyses

The majority of rapeseed cultivars shatter seeds upon maturity especially under hot-dry and windy conditions, reducing yield and gross margin return to growers. Here, we identified quantitative trait loci (QTL) for resistance to pod shatter in an unstructured diverse panel of 143 rapeseed accessions, and two structured populations derived from bi-parental doubled haploid (DH) and inter-mated (I...

متن کامل

Genome-Wide Identification and Expression Profiling of Cytokinin Oxidase/Dehydrogenase (CKX) Genes Reveal Likely Roles in Pod Development and Stress Responses in Oilseed Rape (Brassica napus L.)

Cytokinin oxidase/dehydrogenases (CKXs) play a critical role in the irreversible degradation of cytokinins, thereby regulating plant growth and development. Brassica napus is one of the most widely cultivated oilseed crops worldwide. With the completion of whole-genome sequencing of B. napus, genome-wide identification and expression analysis of the BnCKX gene family has become technically feas...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014